Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Luiz Everson da Silva, ${ }^{\text {a,b }}$ Antonio Carlos Joussef, ${ }^{\text {a }}$ Carla Regina AndrighettiFröhner, ${ }^{a}$ Ricardo José Nunes ${ }^{\text {a }}$ and Adailton José Bortoluzzi ${ }^{\text {a* }}$

${ }^{\text {a Departamento de Química-UFSC, 88040-900 }}$ Florianópolis, SC, Brazil, and ${ }^{\text {b }}$ Clemens-SchöpfInstitut für Organische Chemie und Biochemie, Technische Universität Darmstadt,
Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail:
luiz_everson@yahoo.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.041$
$w R$ factor $=0.103$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-(5-Bromothiazol-2-ylaminomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$, the 1,3-dioxane-4,6dione ring exhibits a sofa conformation. The thiazole ring is nearly planar. The amino H atom has an intramolecular N $\mathrm{H} \cdots \mathrm{O}$ contact, forming a six-membered ring, and an intermolecular hydrogen bond to a carbonyl O is also observed.

Comment

Thiazoles comprise an important class of heterocyclic compounds present in many potent biologically active molecules. This heterocyclic ring also shows various application in the synthesis of new organic compounds (de Souza et al., 2005). We have focused on arylaminomethylene derivatives of Meldrum's acid in our search for biologically active molecules (Joussef et al., 2005a,b; da Silva et al., 2005a,b, 2006). As an extension of this approach, we report an X-ray crystallographic study of the title compound, (I).

(I)

In (I), the 1,3-dioxane-4,6-dione ring exhibits a sofa conformation. The torsion angle $\mathrm{C} 5-\mathrm{N} 6-\mathrm{C} 7-\mathrm{C} 8$ is 176.5 (4) ${ }^{\circ}$ and the distances $\mathrm{N} 6-\mathrm{C} 5$ and $\mathrm{C} 7-\mathrm{C} 8$ indicate delocalization of the conjugated system. The amino H atom forms an intramolecular contact to O 9 , with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.24 \AA$, forming a six-membered ring. Delocalization of the N -atom lone pair into the Meldrum's acid ring may be favoured in the direction of one of the two carbonyl groups (Blake et al., 2003); details of the hydrogen bonding are given in Table 1.

The molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

Received 13 February 2006
Accepted 14 February 2006
\qquad

Experimental

The title compound was prepared according to a literature procedure (Cassis et al., 1985) and was recrystallized from methanol.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=333.16$
Monoclinic, $P 2_{1} / c$
$a=5.408(5) \AA$
$b=18.013(5) \AA$
$c=13.114(5) \AA$
$\beta=100.717(5)^{\circ}$
$V=1255.2(13) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.763 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=5.5-23.7^{\circ} \\
& \mu=3.45 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.50 \times 0.16 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.504, T_{\text {max }}=0.641$
2330 measured reflections
2230 independent reflections
1269 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.103$
$S=1.01$
2230 reflections
164 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\mathrm{int}}=0.033 \\
& \theta_{\max }=25.1^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-21 \rightarrow 0 \\
& l=-15 \rightarrow 0
\end{aligned}
$$

3 standard reflections every 200 reflections intensity decay: 1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0483 P)^{2}\right. \\
& +0.077 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{\AA^{-3}}
\end{aligned}
$$

Figure 2
The molecular packing of (I), with hydrogen bonds shown as dashed lines.

The authors thank Sabine Foro, TU-Darmstadt, Germany, for her help and advice.

References

Blake, A. J., McNab, H. \& Withell, K. (2003). Acta Cryst. E59, o841-o842.
Cassis, R., Tapia, R. \& Valderrama, J. A. (1985). Synth. Commun. 15, 125129.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005a). Acta Cryst. E61, o2642-o2643.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005b). Acta Cryst. E61, o2873-o2874.
Nonius (1993). CAD-4/PC Software. Version 1.2. Nonius, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2006). Acta Cryst. E62, o742-o743.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005a). Acta Cryst. E61, o4121-04122.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005b). Acta Cryst. E61, o4252-o4253.
Souza, M. V. N. de, Ferreira, S. B., Mendonça, J. S., Costa, M. \& Rebello, F. R. (2005). Quím. Nova, 28, 77-84.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

